How to Perform Feature Selection With Numerical Input Data
Last Updated on August 18, 2020 Feature selection is the process of identifying and selecting a subset of input features that are most relevant to the target variable. Feature selection is often straightforward when working with real-valued input and output data, such as using the Pearson’s correlation coefficient, but can be challenging when working with numerical input data and a categorical target variable. The two most commonly used feature selection methods for numerical input data when the target variable is […]
Read more