How to Avoid Exploding Gradients With Gradient Clipping
Last Updated on August 28, 2020 Training a neural network can become unstable given the choice of error function, learning rate, or even the scale of the target variable. Large updates to weights during training can cause a numerical overflow or underflow often referred to as “exploding gradients.” The problem of exploding gradients is more common with recurrent neural networks, such as LSTMs given the accumulation of gradients unrolled over hundreds of input time steps. A common and relatively easy […]
Read more