How to Use Greedy Layer-Wise Pretraining in Deep Learning Neural Networks
Last Updated on August 25, 2020 Training deep neural networks was traditionally challenging as the vanishing gradient meant that weights in layers close to the input layer were not updated in response to errors calculated on the training dataset. An innovation and important milestone in the field of deep learning was greedy layer-wise pretraining that allowed very deep neural networks to be successfully trained, achieving then state-of-the-art performance. In this tutorial, you will discover greedy layer-wise pretraining as a technique […]
Read more