CvT: Introducing Convolutions to Vision Transformers
convolution-vision-transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers , for official repo please visit here. Usage: img = torch.ones([1, 3, 224, 224]) model = CvT(224, 3, 1000) parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 print(‘Trainable Parameters: %.3fM’ % parameters) out = model(img) print(“Shape of out :”, out.shape) # [B, num_classes] Citation: @misc{wu2021cvt, title={CvT: Introducing Convolutions to Vision Transformers}, author={Haiping Wu and Bin Xiao and Noel Codella and Mengchen Liu and […]
Read more