Information Gain and Mutual Information for Machine Learning
Last Updated on August 28, 2020 Information gain calculates the reduction in entropy or surprise from transforming a dataset in some way. It is commonly used in the construction of decision trees from a training dataset, by evaluating the information gain for each variable, and selecting the variable that maximizes the information gain, which in turn minimizes the entropy and best splits the dataset into groups for effective classification. Information gain can also be used for feature selection, by evaluating […]
Read more