Classification Accuracy is Not Enough: More Performance Measures You Can Use
Last Updated on June 20, 2019 When you build a model for a classification problem you almost always want to look at the accuracy of that model as the number of correct predictions from all predictions made. This is the classification accuracy. In a previous post, we have looked at evaluating the robustness of a model for making predictions on unseen data using cross-validation and multiple cross-validation where we used classification accuracy and average classification accuracy. Once you have a […]
Read more