Essence of Bootstrap Aggregation Ensembles
Bootstrap aggregation, or bagging, is a popular ensemble method that fits a decision tree on different bootstrap samples of the training dataset. It is simple to implement and effective on a wide range of problems, and importantly, modest extensions to the technique result in ensemble methods that are among some of the most powerful techniques, like random forest, that perform well on a wide range of predictive modeling problems. As such, we can generalize the bagging method to a framework […]
Read more