A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usage import timbremetrics datasets = timbremetrics.list_datasets() dataset = datasets[0] # get the first timbre dataset # MAE between target dataset and pred embedding distances metric = timbremetrics.TimbreMAE( margin=0.0, dataset=dataset, distance=timbremetrics.l1 ) # get numpy audio for the timbre dataset audio = timbremetrics.get_audio(dataset) # get arbitrary embeddings for the timbre dataset’s audio embeddings = net(audio) # compute the metric metric(embeddings) Metrics The following metrics […]
Read more