BenchmarkQED: Automated benchmarking of RAG systems

Diagram showing how the dimensions of query source (data-driven vs activity-driven) and query scope (local vs global) create four query classes that span the local-to-global query spectrum: data-local, activity-local, data-global, and activity-global.

One of the key use cases for generative AI involves answering questions over private datasets, with retrieval-augmented generation (RAG) as the go-to framework. As new RAG techniques emerge, there’s a growing need to benchmark their performance across diverse datasets and metrics. 

To meet this need, we’re introducing BenchmarkQED, a new suite of tools that automates RAG benchmarking at scale, available on

 

 

To finish reading, please visit source site

Leave a Reply