Official Pytorch+Lightning Implementation for NU-Wave
				NU-Wave
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han @ MINDsLab Inc., SNU
Paper(arXiv): https://arxiv.org/abs/2104.02321 (Accepted to INTERSPEECH 2021)
Audio Samples: https://mindslab-ai.github.io/nuwave
Official Pytorch+Lightning Implementation for NU-Wave.

Requirements
Preprocessing
Before running our project, you need to download and preprocess dataset to .pt files
- Download VCTK dataset
 - Remove speaker 
p280andp315 - Modify path of downloaded dataset 
data:dirinhparameters.yaml - run 
utils/wav2pt.py 
$ python utils/wav2pt.py
Training
- Adjust 
hparameters.yaml, especiallytrainsection. 
train:
  batch_size: 18 # Dependent on GPU memory size
  lr: 0.00003
  weight_decay: 0.00
  num_workers: 64 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  opt_eps: 1e-9
  beta1: 0.5
  beta2: 0.999
- If you want to train with single speaker, use 
VCTKSingleSpkDatasetinstead