Flexible interface for high performance research using SOTA Transformers
 
				lightning-transformers
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Installation
Option 1: from PyPI
pip install lightning-transformers
# instead of: `python train.py ...`, run with:
pl-transformers-train ...
Option 2: from source
git clone https://github.com/PyTorchLightning/lightning-transformers.git
cd lightning-transformers
pip install .
python train.py ...
# the `pl-transformers-train` endpoint is also available!
Quick recipes
Train bert-base-cased on the CARER emotion dataset using the Text Classification task.
python train.py 
    task=nlp/text_classification 
    dataset=nlp/text_classification/emotion
See the composed Hydra config used under-the-hood
optimizer:
  _target_: torch.optim.AdamW
  lr: ${training.lr}
  weight_decay: 0.001
scheduler:
  _target_: transformers.get_linear_schedule_with_warmup
  num_training_steps: -1
  num_warmup_steps: 0.1
training:
  run_test_after_fit: true
  lr: 5.0e-05
  output_dir: .
  batch_size: 16
  num_workers: 16
trainer:
  _target_: pytorch_lightning.Trainer
  logger: true