Browse By

Tag Archives: scikit-learn

python_tutorials

Generating Synthetic Data with Numpy and Scikit-Learn

Introduction In this tutorial, we’ll discuss the details of generating different synthetic datasets using Numpy and Scikit-learn libraries. We’ll see how different samples can be generated from various distributions with known parameters. We’ll also discuss generating datasets for different purposes, such as regression, classification, and

python_tutorials

Kernel Density Estimation in Python Using Scikit-Learn

Introduction This article is an introduction to kernel density estimation using Python’s machine learning library scikit-learn. Kernel density estimation (KDE) is a non-parametric method for estimating the probability density function of a given random variable. It is also referred to by its traditional name, the

python_tutorials

Python for NLP: Topic Modeling

This is the sixth article in my series of articles on Python for NLP. In my previous article, I talked about how to perform sentiment analysis of Twitter data using Python’s Scikit-Learn library. In this article, we will study topic modeling, which is another very

python_tutorials

Predicting Customer Ad Clicks via Machine Learning

Introduction Internet marketing has taken over traditional marketing strategies in the recent past. Companies prefer to advertise their products on websites and social media platforms. However, targeting the right audience is still a challenge in online marketing. Spending millions to display the advertisement to the

python_tutorials

Multiple Linear Regression with Python

Introduction Linear regression is one of the most commonly used algorithms in machine learning. You’ll want to get familiar with linear regression because you’ll need to use it if you’re trying to measure the relationship between two or more continuous values. A deep dive into

python_tutorials

Gradient Boosting Classifiers in Python with Scikit-Learn

Introduction Gradient boosting classifiers are a group of machine learning algorithms that combine many weak learning models together to create a strong predictive model. Decision trees are usually used when doing gradient boosting. Gradient boosting models are becoming popular because of their effectiveness at classifying

python_tutorials

Dimensionality Reduction in Python with Scikit-Learn

Introduction In machine learning, the performance of a model only benefits from more features up until a certain point. The more features are fed into a model, the more the dimensionality of the data increases. As the dimensionality increases, overfitting becomes more likely. There are

python_tutorials

Ensemble/Voting Classification in Python with Scikit-Learn

Introduction Ensemble classification models can be powerful machine learning tools capable of achieving excellent performance and generalizing well to new, unseen datasets. The value of an ensemble classifier is that, in joining together the predictions of multiple classifiers, it can correct for errors made by any individual

python_tutorials

Grid Search Optimization Algorithm in Python

Introduction In this tutorial, we are going to talk about a very powerful optimization (or automation) algorithm, i.e. the Grid Search Algorithm. It is most commonly used for hyperparameter tuning in machine learning models. We will learn how to implement it using Python, as well